

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008324 (ChETEC-INFRA).

ChETEC-INFRA TNA Event, 26.07.2021

CHETEC * INFRA

TA Facility HZDR – Felsenkeller Access for astronuclear experiments

Daniel Bemmerer

Institute of Radiation Physics · Division of Nuclear Physics · d.bemmerer@hzdr.de · www.hzdr.de

Institute of Radiation Physics · Division of Nuclear Physics · d.bemmerer@hzdr.de · www.hzdr.de

Two ion sources for high intensity beams

External Cesium sputter ion source

- produces intensive
 ¹²C⁻ beam
- measured up to 140 µA after the source
- other species of negatively charged ions available

Internal radio frequency ion source

- produces intensive ¹H and ⁴He beams
- expected up to 30 µA

Daniel Bemmerer · 26.07.2021 TNA Facility Presentation HZDR Felsenkeller

3

Institute of Radiation Physics · Division of Nuclear Physics · d.bemmerer@hzdr.de · www.hzdr.de

Irradiation station: solid or gas target system

Solid target system

cooled by water or liquid nitrogen

Gas target system

 wall jet and/or windowless extended gas target system (under construction)

Currently available detectors for gamma-rays produced in the astronuclear reaction

Multiple high purity germanium detectors (grey) with active (BGO, blue) and passive (lead, yellow) shielding and collimators:

1 x 90% HPGe

4 x Euroball/Miniball (2 x 7-cluster, 2 x 3-cluster)

Figure taken from T. Szücs et al., Eur. Phys. J. A 55, 174, 2019.

Daniel Bemmerer · 26.07.2021 **TNA Facility Presentation HZDR Felsenkeller** Institute of Radiation Physics · Division of Nuclear Physics · d.bemmerer@hzdr.de · www.hzdr.de

Details of TA at HZDR – Felsenkeller

- Minimum total quantity of access provided under ChETEC-INFRA TA: 975 beam time hours
 - 200 to 400 beam time hours each in year
 - 100 to 300 beam time hours as typical amount per user project
- Access is provided in hands-on mode
 - user group must attend the experiment and work on the control of the detectors
 - ion beam will be provided and controlled exclusively by the trained operators of the facility, not by the users
- Users can

6

- either use irradiation stations and detectors free of charge
- or bring part of or even the whole setup themselves
- Accommodation
 - Suitable hotel room near Felsenkeller will be booked with good public transport connection to Felsenkeller
- Review Procedure: Access granted and reimbursed only for positive outcome by both,
 - ChETEC-INFRA User Selection Panel (USP)
 - Felsenkeller Scientific Advisory Board

HZDR – Felsenkeller

Facility for experimental nuclear astrophysics

Summary

- 5 MV Pelletron ion accelerator
- underground, shielded from cosmic rays by 45 m of rock overburden
- combined with active muon vetos, the background rate is typically reduced by three orders of magnitudes
- external cesium sputter ion source for
 - intensive carbon beams
 - many other species of negatively charged ions
- internal radio frequency ion source placed on the terminal for intensive
 - hydrogen beams
 - helium beams

References

7

- M. Grieger et al., Phys. Rev. D **101**, 123027, 2020
- F. Ludwig et al., Astropart. Phys. **112**, 24, 2019
- T. Szücs et al., Eur. Phys. J. A 55, 174, 2019

