

Transnational access within the ChETEC project University of Cologne Andreas Zilges / Felix Heim

Department of Physics

Institute for Nuclear Physics

Groups:

- Prof. Jan Jolie
- Prof. Peter Reiter
- Prof. Andreas Zilges
- Prof. N.N. (AMS)
- Prof. N.N. (GSI)

Scientific staff:

- 4 Senior scientists (including 1 lecturer)
- 6 Postdocs
- Around 25 doctoral students
- 20-30 Bachelor and Master students
- 18 technicians (workshop and accelerators)
- 3 administrative staff

Mechanical Workshop

Fully equipped mechanical workshop with 15 employees

Electronics workshop

Electronics development workshop

Target laboratory

In-house target production via:

- Electrolysis
- Evaporation
- Rolling of self-supporting foils

Target laboratory

Accelerators @ Cologne

- Up to 10 MV terminal voltage
- Two ion sources:
 - Duoplasmatron (p,³He,⁴He)
 - Sputter source (up to A=127)
- Beam intensities:
 - 800 nA (p)
 - 200 nA (⁴He)

- Operational since 2011
- 6 MV terminal voltage
- Standard isotopes: ¹⁰Be, ¹⁴C, ²⁶Al, ³⁶Cl, (²⁴⁴Pu)
- Commissioning for p, ⁴He pending

Accelerators @ Cologne

- Up to 10 MV terminal voltage
- Two ion sources:
 - Duoplasmatron (p,³He,⁴He)
 - Sputter source (up to A=127)
- Beam intensities:
 - 800 nA (p)
 - 200 nA (⁴He)

Virtual tour

(https://www.ikp.uni-koeln.de/apps/tour/fn/)

10 MV Tandem accelerator

10 MV FN-Tandem beamlines

- Different beam lines for different experimental setups available
- Most frequently used:
 - Plunger setup for lifetime measurements
 - HORUS γ-ray spectrometer for nuclear structure and nuclear astrophysics

10 MV Tandem accelerator

- Different beam lines for different experimental setups available
- Most frequently used:
 - Plunger setup for lifetime measurements
 - HORUS γ-ray spectrometer for nuclear structure and nuclear astrophysics

University of Cologne | F. Heim & A. Zilges | 01.02.2022

M. Schiffer *et al.,* Nucl. Inst. Meth. Phys. Res. B **361** (2015) 95

HORUS y-ray spectrometer

- 14 HPGe detectors
 - Resolution ≈ 2 % @ 1.3 MeV
 - Total efficiency ≈ 2-4 % @ 1.3 MeV
- 5 different angles with respect to the beam axis for angular distribution measurements
- BGO shields for 6 detectors
- γγ-coincidence measurements
- Various target chambers can be mounted inside of HORUS

HORUS y-ray spectrometer

Nuclear astrophysics

- Compact dimension
- Absolute beam current measurements

HORUS y-ray spectrometer

2 cm

Foil thickness: 100 μg/cm² -1500 μg/cm²

Target mounting

Nuclear astrophysics

- Compact dimension
- Absolute beam current measurements

Stacked-target experiments

Stacked targets

- Up to four targets irradiated simultaneously
- Water cooling possible

Approx. 20 cm

Approx. 5 cm

Stacked-target experiments

Stacked Target

Stacked targets

- Up to four targets irradiated simultaneously
- Water cooling possible

Approx. 5 cm

Offline y-ray counting

Clover counting setup

Geant4 simulation

- Two HPGe Clover detectors with 4 crystals each -> $\gamma\gamma$ -coincidences
- Target-detector distance 13 mm
- Approx. 8 % tot. efficiency at 1.3 MeV

Nuclear astrophysics

SONIC (SilicON Identification Chamber)

University of Cologne | F. Heim & A. Zilges | 01.02.2022

SONIC@HORUS

Particle detection

- 12 Silicon detector positions
- ΔE-E telescopes possible
- Solid angle coverage up to 9%
- In-beam energy resolution ≈70 keV

γ -ray detection

- 14 HPGe detectors
- 6 BGO shields
- Full-energy peak efficiency
 - ≈2% @ 1332 keV

Experimental information available

5

Projectile

- Energy
- Direction
- Probe

Gamma rays

- Energy
- Time
- Angles Θ , Φ

Ejectile

- Energy
- Time
- Angles Θ , Φ
- Particle ID

- Reaction channel
- Excitation and decay energies
- Recoil energy and direction

Complete kinematics in scattering and transfer experiments!

-> Excitation, decay, branching, lifetime, ...

University of Cologne | F. Heim & A. Zilges | 01.02.2022

¹¹⁹Sn(d,p γ) – Particle identification

Graphical gate in ΔE -E to distinguish (d,p) from (d,d')

¹¹⁹Sn(d,pγ) – Excitation and decay channel

Select direct excitation and decay into specific state in ¹²⁰Sn

University of Cologne | F. Heim & A. Zilges | 01.02.2022

TNA @ Cologne

10 MV FN-Tandem

- Up to 10 MV terminal voltage
- Two ion sources:
 - Duoplasmatron (p,³He,⁴He)
 - Sputter source (up to A=127)
- Beam intensities:
 - 800 nA (p)
 - 200 nA (⁴He)

Contact

If you are interested in TNA, please contact us informally in advance:

• Contact for TNA at University of Cologne:

Prof. Dr. Andreas Zilges

zilges@ikp.uni-koeln.de

- Representative:
 - Dr. Felix Heim

fheim@ikp.uni-koeln.de

References

HORUS array + nuclear astrophysics target chamber

F. Heim et al., Nucl. Inst. Meth. Phys. Res. A 966, 163854 (2020)

In-beam (p,γ) experiments

F. Heim *et al.*, Phys. Rev. C **101**, 035805 (2020) (¹⁰⁷Ag)
F. Heim *et al.*, Phys. Rev. C **101**, 035807 (2020) (⁹³Nb)
P. Scholz *et al.*, Phys. Rev. C **101**, 045806 (2020) (^{63,65}Cu)
F. Heim *et al.*, Phys. Rev. C **103**, 055803 (2021) (¹⁰⁹Ag)

Activation experiments

F. Heim *et al.*, Phys. Rev. C **103**, 054613 (2021) (⁹⁶Mo) P. Scholz *et al.*, Phys. Lett. B **761**, 247 (2016) (¹⁰⁸Cd)

SONIC target chamber

S. G. Pickstone et al., Nucl. Inst. Meth. Phys. Res. A 875, 104 (2017)

Transfer reactions (PDR studies)

M. Weinert *et al.,* Phys. Rev. Lett. **127**, 242501 (2021) (¹²⁰Sn)

Nuclear level lifetimes

S. Prill et al., accepted at PRC (128,130Te)

If you are interested in TNA, please contact us informally in advance:

• Contact for TNA at University of Cologne:

Contact

Prof. Dr. Andreas Zilges

zilges@ikp.uni-koeln.de

- Representative:
 - Dr. Felix Heim

fheim@ikp.uni-koeln.de

