Stellar Evolution Simulations

This page reviews the theoretical work led or supported by WP4 (task 4.1). WP4 led or supported a wide range of simulations of stars in both multi-dimensional hydrodynamic simulations as well as one-dimensional (spherically symmetric) stellar evolution models. WP4 also delivered predictions of nucleosynthesis productions in stars of various masses, metallicities and input physics (e.g. rotation and magnetic fields, single and binary stars). In addition, WP4 delivered various astronomical impact studies of newly measured reactions rates for various processes (e.g. slow, intermediate and rapid neutron capture processes) in different astrophysical environments (e.g. novae, low-mass stars, massive stars, X-ray bursts, supernova explosions).

The publications published in years 3 and 4 resulting from WP4 activities are listed below and this review is reported on the ChETEC-INFRA website under resources: https://www.chetec-infra.eu/resources/#SimulationsWP4.

In year 3 and 4, HPC simulations have been done by several PhD students and postdocs and include for example:

Paul Fong (PhD), University of Hull (UK), Nucleosynthesis in PISNe, VIPER (UHULL)

PISN models: three M = 300 Msun models (Z=solar, solar/10 – see Figure 1 – and solar/100) ; one M = 100Msun model (Z=solar/100) to determine PISN yields. Tests for PISN explosions setup and development.

Wan Aishah Arun (PhD), University of Edinburgh (UK), Nucleosynthesis in massive stars, greenHPC (UKEELE)

Post-processing simulation of massive star models at Z=0.001 including improved convective boundary mixing.

Lorenzo Roberti (PDRA), Konkoly, Hungary/INAF, VIPER (UHULL)

1. Nucleosynthesis calculation of pre-supernova evolution of 12-15-20-25 Msun stars from Ritter et al., 2018 with an extended nuclear network (5234 isotopes and more than 70 000 reactions). Used JINA Reaclib 1.0 database. Case of solar metallicity (Z = 0.02). Models used to investigate the gamma -process in Roberti et al., 2023, A&A, 677, A22 (https://doi.org/10.1051/0004-6361/202346556) and the nucleosynthesis in case of C-O shell mergers (Roberti et al., submitted to A&A).

2. Same as point 1), but in the case of and half solar metallicity (Z = 0.01).

3. Core-collapse supernova calculation and nucleosynthesis using the NuExp tool in the case of 15-20-25 Msun models of point 1). Performed multiple supernova explosion changing the initial shock conditions (Sedov-BlastWave approximation, SBW), for a total of 8 explosions per model. Implemented an alternative explosion method based on the radiation dominated approximation (RDA), for additional 8 explosions per model. The 24 SBW models published in A&A Letters (https://doi.org/10.1051/0004-6361/202449994).

4. Same as point 3) for the SBW models, but using JINA Reaclib version 2.2. Paper in preparation.

5. Developed a new version of the NuExp tool with the aid of Christopher L. Fryer under the IReNA visiting fellowship. Currently under testing, new set relative to models in point 3) in preparation.

6. Extension of NuGrid yield database: testing the pre-supernova nucleosynthesis calculation for 33 of the MESA models published in Brinkman et al., 2021 (10.3847/1538-4357/ac25ea) and the FRANEC models (Limongi & Chieffi, 2018, 10.3847/1538-4365/aacb24).

For these simulations, users adopted the latest version of the NuGrid nucleosynthesis codes MPPNP and TPPNP developed and maintained by the NuGrid collaboration (www.nugridstars.org). These are the same NuGrid nucleosynthesis codes used for stellar yields calculations over many years (e.g., Pignatari et al. 2016 – DOI: 10.3847/0067-0049/225/2/24 – and Lawson et al. 2022 – DOI: 10.1093/mnras/stab3684) and working in production mode on the UHULL viper cluster. The solver package used to perform the nucleosynthesis post-processing calculation is described with all the available options by Jones et al. (2019) – DOI: https://doi.org/10.1051/0004-6361/201834381. These codes provide parallel numerical simulations (Fortran, MPI technology), enabling large-scale high-resolution calculations of nucleosynthesis on full stellar data sets, read directly in hdf5 or binary format. In summary, the code is written in fortran (gfortran compatible and tested in debug mode), and the modules hdf5, openmpi and openblas are loaded.

The results from ongoing activities will be captured in future publications.


Figure 1: Abundance profile of Mo92 with respect to mass coordinate in 8 20Msun models of CCSN ejecta for different explosion energies (Roberti et al.
2024, A&A Letter, 686 8).

All the publications with the acknowledgements of the ChETEC-INFRA activities are available on the Resources page.

The WP4 simulations undertaken and resulting publications in year 3 and 4 of the project (not included in the D4.4 deliverable at month 24) are:

“Statistical framework for nuclear parameter uncertainties in nucleosynthesis modeling of r- and i-process”, Martinet, S., Goriely, S., Choplin, A., and Siess, L., 2025, European Physical Journal A, 61, 48 (https://ui.adsabs.harvard.edu/abs/2025EPJA…61…48M)

“Nuclear Astrophysics in the Storage Ring: Background Suppressed Simultaneous Measurement of (p,γ) and (p,n) Reactions”, Varga, L., Glorius, J., Aliotta, M., Blaum, K., Bott, L., Brandau, C., Brückner, B., Bruno, C. G., Chen, X., Chen, R., Dababneh, S., Davinson, T., Dmytriiev, D., Dellmann, S. F., Dillmann, I., Erbacher, P., Fiebiger, S., Forstner, O., Gassner, T., Göbel, K., Goriely, S., Griffin, C. J., Grisenti, R. E., Groothuis, M., Gumberidze, A., Gyürky, G., Heil, M., Hensch, R., Hess, R., Hillenbrand, P.-M., Hillmann, P., Hinrichs, O., Joseph, R., Jurado, B., Kausch, T., Khasawneh, K., Khodaparast, A., Kisselbach, T., Klapper, N., Kozhuharov, C., Kurtulgil, D., Lane, G. J., Langer, C., Leckenby, G., Lederer-Woods, C., Lestinsky, M., Litvinov, Y. A., Litvinov, S., Löher, B., Lorenz, E., Lorentz, B., Marini, P., Marsh, J., Menz, E., Morgenroth, T., Nguyen, T. T., Nolden, F., Petridis, N., Popp, U., Psaltis, A., Reed, M., Reifarth, R., Sanjari, M. S., Savran, D., Sguazzin, M., Simon, H., Sidhu, R. S., Slavkovská, Z., Spillmann, U., Steck, M., Stöhlker, T., Stumm, J., Surzhykov, A., Swartz, J., Szücs, T., Taremi Zadeh, A., Thomas, B., Torilov, S. Y., Törnqvist, H., Träger, M., Trageser, C., Trotsenko, S., Vescovi, D., Volknandt, M., Weick, H., Weigand, M., Wolf, C., Woods, P. J., Xing, Y. M., and Yamaguchi, T., 2025, Physical Review Letters, 134, 082701 (https://ui.adsabs.harvard.edu/abs/2025PhRvL.134h2701V)

“What to expect from microscopic nuclear modelling for k_eff calculations?”, Rochman, D., Koning, A., Goriely, S., and Hilaire, S., 2025, Nuclear Physics A, 1054, 122979 (https://ui.adsabs.harvard.edu/abs/2025NuPhA105422979R)

“The impact of mass uncertainties on r-process nucleosynthesis in neutron star mergers”, Martinet, S. and Goriely, S., 2025, Astronomy and Astrophysics, 694, A180 (https://ui.adsabs.harvard.edu/abs/2025A\&A…694A.180M)

“TENDL-astro: A new nuclear data set for astrophysics interest”, Rochman, D., Koning, A., Goriely, S., and Hilaire, S., 2025, Nuclear Physics A, 1053, 122951 (https://ui.adsabs.harvard.edu/abs/2025NuPhA105322951R)

“Mass-Loss, Composition and Observational Signatures of Stellar Winds From X-Ray Bursts”, Herrera, Y., Munoz Vela, D., Sala, G., José, J., and Cavecchi, Y., 2025, Astronomische Nachrichten, 346, e20240122 (https://ui.adsabs.harvard.edu/abs/2025AN….34640122H)

“Evolving massive stars to core collapse with GENEC: Extension of equation of state, opacities and effective nuclear network”, Griffiths, A., Aloy, M.-A., Hirschi, R., Reichert, M., Obergaulinger, M., Whitehead, E. E., Martinet, S., Sciarini, L., Ekström, S., and Meynet, G., 2025, Astronomy and Astrophysics, 693, A93 (https://ui.adsabs.harvard.edu/abs/2025A\&A…693A..93G)

“Silicon Isotopic Composition of Mainstream Presolar SiC Grains Revisited: The Impact of Nuclear Reaction Rate Uncertainties”, Fok, H. K., Pignatari, M., Côté, B., and Trappitsch, R., 2024, The Astrophysical Journal, 977, L24 (https://ui.adsabs.harvard.edu/abs/2024ApJ…977L..24F)

“High-temperature 205-Tl decay clarifies 205-Pb dating in early Solar System”, Leckenby, G., Sidhu, R. S., Chen, R. J., Mancino, R., Szányi, B., Bai, M., Battino, U., Blaum, K., Brandau, C., Cristallo, S., Dickel, T., Dillmann, I., Dmytriiev, D., Faestermann, T., Forstner, O., Franczak, B., Geissel, H., Gernhäuser, R., Glorius, J., Griffin, C., Gumberidze, A., Haettner, E., Hillenbrand, P.-M., Karakas, A., Kaur, T., Korten, W., Kozhuharov, C., Kuzminchuk, N., Langanke, K., Litvinov, S., Litvinov, Y. A., Lugaro, M., Martínez-Pinedo, G., Menz, E., Meyer, B., Morgenroth, T., Neff, T., Nociforo, C., Petridis, N., Pignatari, M., Popp, U., Purushothaman, S., Reifarth, R., Sanjari, S., Scheidenberger, C., Spillmann, U., Steck, M., Stöhlker, T., Tanaka, Y. K., Trassinelli, M., Trotsenko, S., Varga, L., Vescovi, D., Wang, M., Weick, H., Yagüe Lopéz, A., Yamaguchi, T., Zhang, Y., and Zhao, J., 2024, Nature, 635, 321 (https://ui.adsabs.harvard.edu/abs/2024Natur.635..321L)

“Hydrodynamical shear mixing in subsonic boundary layers and its role in the thermonuclear explosion of classical novae”, Bellomo, M., Shore, S. N., and José, J., 2024, Astronomy and Astrophysics, 690, A361 (https://ui.adsabs.harvard.edu/abs/2024A\&A…690A.361B)

“Unveiling the chemical fingerprint of phosphorus-rich stars: II. Heavy-element abundances from UVES/VLT spectra”, Brauner, M., Pignatari, M., Masseron, T., García-Hernández, D. A., and Lugaro, M., 2024, Astronomy and Astrophysics, 690, A262 (https://ui.adsabs.harvard.edu/abs/2024A\&A…690A.262B)

“Grids of stellar models with rotation: VIII. Models from 1.7 to 500 solar masses at metallicity Z = 10^{‑5}”, Sibony, Y., Shepherd, K. G., Yusof, N., Hirschi, R., Chambers, C., Tsiatsiou, S., Nandal, D., Sciarini, L., Moyano, F. D., Bétrisey, J., Buldgen, G., Georgy, C., Ekström, S., Eggenberger, P., and Meynet, G., 2024, Astronomy and Astrophysics, 690, A91 (https://ui.adsabs.harvard.edu/abs/2024A\&A…690A..91S)

“New Wolf-Rayet wind yields and nucleosynthesis of Helium stars”, Higgins, E. R., Vink, J. S., Hirschi, R., Laird, A. M., and Sander, A. A. C., 2024, Monthly Notices of the Royal Astronomical Society, 533, 1095 (https://ui.adsabs.harvard.edu/abs/2024MNRAS.533.1095H)

“Shell mergers in the late stages of massive star evolution: new insight from 3D hydrodynamic simulations”, Rizzuti, F., Hirschi, R., Varma, V., Arnett, W. D., Georgy, C., Meakin, C., Mocák, M., Murphy, A. S., and Rauscher, T., 2024, Monthly Notices of the Royal Astronomical Society, 533, 687 (https://ui.adsabs.harvard.edu/abs/2024MNRAS.533..687R)

“Shedding Light on the Origin of 204-Pb , the Heaviest s -Process-Only Isotope in the Solar System”, Casanovas-Hoste, A., Domingo-Pardo, C., Lerendegui-Marco, J., Guerrero, C., Tarifeno-Saldivia, A., Krtivcka, M., Pignatari, M., Calvino, F., Schumann, D., Heinitz, S., Dressler, R., Köster, U., Aberle, O., Andrzejewski, J., Audouin, L., Bécares, V., Bacak, M., Balibrea-Correa, J., Barbagallo, M., Barros, S., Bevcvávr, F., Beinrucker, C., Berthoumieux, E., Billowes, J., Bosnar, D., Brugger, M., Caamano, M., Calviani, M., Cano-Ott, D., Cardella, R., Castelluccio, D. M., Cerutti, F., Chen, Y. H., Chiaveri, E., Colonna, N., Cortés, G., Cortés-Giraldo, M. A., Cosentino, L., Damone, L. A., Diakaki, M., Dupont, E., Durán, I., Fernández-Domínguez, B., Ferrari, A., Ferreira, P., Finocchiaro, P., Furman, V., Göbel, K., García, A. R., Gawlik-Ramiega, A., Glodariu, T., Goncalves, I. F., González-Romero, E., Goverdovski, A., Griesmayer, E., Gunsing, F., Harada, H., Heftrich, T., Heyse, J., Jenkins, D. G., Jericha, E., Käppeler, F., Kadi, Y., Katabuchi, T., Kavrigin, P., Ketlerov, V., Khryachkov, V., Kimura, A., Kivel, N., Kokkoris, M., Leal-Cidoncha, E., Lederer-Woods, C., Leeb, H., Lo Meo, S., Lonsdale, S. J., Losito, R., Macina, D., Marganiec, J., Martínez, T., Massimi, C., Mastinu, P., Mastromarco, M., Matteucci, F., Maugeri, E. A., Mendoza, E., Mengoni, A., Milazzo, P. M., Mingrone, F., Mirea, M., Montesano, S., Musumarra, A., Nolte, R., Oprea, A., Patronis, N., Pavlik, A., Perkowski, J., Porras, I., Praena, J., Quesada, J. M., Rajeev, K., Rauscher, T., Reifarth, R., Riego-Perez, A., Romanets, Y., Rout, P. C., Rubbia, C., Ryan, J. A., Sabaté-Gilarte, M., Saxena, A., Schillebeeckx, P., Schmidt, S., Sedyshev, P., Smith, A. G., Stamatopoulos, A., Tagliente, G., Tain, J. L., Tassan-Got, L., Tsinganis, A., Valenta, S., Vannini, G., Variale, V., Vaz, P., Ventura, A., Vlachoudis, V., Vlastou, R., Wallner, A., Warren, S., Weigand, M., Weiss, C., Wolf, C., Woods, P. J., Wright, T., vZugec, P., and n TOF Collaboration, 2024, Physical Review Letters, 133, 052702 (https://ui.adsabs.harvard.edu/abs/2024PhRvL.133e2702C)

“Isotope studies of presolar silicon carbide grains from supernovae: new constraints for hydrogen-ingestion supernova models”, Hoppe, P., Leitner, J., Pignatari, M., and Amari, S., 2024, Monthly Notices of the Royal Astronomical Society, 532, 211 (https://ui.adsabs.harvard.edu/abs/2024MNRAS.532..211H)

“3D simulations of a neon burning convective shell in a massive star”, Georgy, C., Rizzuti, F., Hirschi, R., Varma, V., Arnett, W. D., Meakin, C., Mocak, M., Murphy, A. S., and Rauscher, T., 2024, Monthly Notices of the Royal Astronomical Society, 531, 4293 (https://ui.adsabs.harvard.edu/abs/2024MNRAS.531.4293G)

“Peculiarities of the chemical enrichment of metal-poor stars in the Milky Way Galaxy★”, Mishenina, T., Pignatari, M., Usenko, I., Soubiran, C., Thielemann, F.-K., Kniazev, A. Y., Korotin, S. A., and Gorbaneva, T., 2024, Astronomy and Astrophysics, 687, A229 (https://ui.adsabs.harvard.edu/abs/2024A\&A…687A.229M)

“Thermonuclear P-28(p,g)S-29 reaction rate and astrophysical implication in ONe nova explosion”, Liu, J. B., José, J., Hou, S. Q., Pignatari, M., Trueman, T. C. L., Longland, R., Li, J. G., Bertulani, C. A., and Xu, X. X., 2024, Astronomy and Astrophysics, 687, A199 (https://ui.adsabs.harvard.edu/abs/2024A\&A…687A.199L)

“The gamma-process nucleosynthesis in core-collapse supernovae. II. Effect of the explosive recipe”, Roberti, L., Pignatari, M., Fryer, C., and Lugaro, M., 2024, Astronomy and Astrophysics, 686, L8 (https://ui.adsabs.harvard.edu/abs/2024A\&A…686L…8R)

“Experimental Determination of alpha Widths of Ne-21 Levels in the Region of Astrophysical Interest: New O17+alpha Reaction Rates and Impact on the Weak s Process”, Hammache, F., Adsley, P., Lamia, L., Harrouz, D. S., de Séréville, N., Bastin, B., Choplin, A., Faestermann, T., Fougères, C., Hertenberger, R., Hirschi, R., La Cognata, M., Meyer, A., Palmerini, S., Pizzone, R. G., de Oliveira Santos, F., Romano, S., Tumino, A., and Wirth, H.-F., 2024, Physical Review Letters, 132, 182701 (https://ui.adsabs.harvard.edu/abs/2024PhRvL.132r2701H)

“Systematic study of the low-lying electric dipole strength in Sn isotopes and its astrophysical implications”, Markova, M., Larsen, A. C., von Neumann-Cosel, P., Litvinova, E., Choplin, A., Goriely, S., Martinet, S., Siess, L., Guttormsen, M., Pogliano, F., and Siem, S., 2024, Physical Review C, 109, 054311 (https://ui.adsabs.harvard.edu/abs/2024PhRvC.109e4311M)

“Impact of Newly Measured Nuclear Reaction Rates on 26-Al Ejected Yields from Massive Stars”, Battino, U., Roberti, L., Lawson, T. V., Laird, A. M., and Todd, L., 2024, Universe, 10, 204 (https://ui.adsabs.harvard.edu/abs/2024Univ…10..204B)

“The intermediate neutron capture process. IV. Impact of nuclear model and parameter uncertainties”, Martinet, S., Choplin, A., Goriely, S., and Siess, L., 2024, Astronomy and Astrophysics, 684, A8 (https://ui.adsabs.harvard.edu/abs/2024A\&A…684A…8M)

“Nuclear Physics Mid Term Plan at LNGS”, Buompane, R., Cavanna, F., Curceanu, C., Dónofrio, A., Di Leva, A., Formicola, A., Gialanella, L., Gustavino, C., Imbriani, G., Junker, M., Marcian`o, A., Marzaioli, F., Nania, R., Napolitano, F., Piscicchia, K., Straniero, O., Abia, C., Aliotta, M., Bemmerer, D., Best, A., Boeltzig, A., Bruno, C., Caciolli, A., Chieffi, A., Ciani, G., Dágata, G., deBoer, R. J., De Cesare, M., Dell’Aquila, D., Depalo, R., Dominguez, I., Ferraro, F., Garcia Duarte, J., Guglielmetti, A., Gyürky, G., Hayakawa, S., La Cognata, M., Lamia, L., Marcucci, L. E., Masha, E., Mazzocco, M., Morales-Gallegos, E. L., Palmerini, S., Passariello, I., Petraglia, A., Piatti, D., Pignatari, M., Pizzone, R. G., Porzio, G., Rapagnani, D., Rapisarda, G. G., Romano, S., Rubino, M., Santonastaso, C., Sergi, M. L., Skowronski, J., Spart`a, R., Terrasi, F., Tumino, A., Turkat, S., Wiescher, M., and Zavatarelli, S., 2024, European Physical Journal Plus, 139, 224 (https://ui.adsabs.harvard.edu/abs/2024EPJP..139..224B)

“Spectacular Nucleosynthesis from Early Massive Stars”, Ji, A. P., Curtis, S., Storm, N., Chandra, V., Schlaufman, K. C., Stassun, K. G., Heger, A., Pignatari, M., Price-Whelan, A. M., Bergemann, M., Stringfellow, G. S., Fröhlich, C., Reggiani, H., Holmbeck, E. M., Tayar, J., Shah, S. P., Griffith, E. J., Laporte, C. F. P., Casey, A. R., Hawkins, K., Horta, D., Cerny, W., Thibodeaux, P., Usman, S. A., Amarante, J. A. S., Beaton, R. L., Cargile, P. A., Chiappini, C., Conroy, C., Johnson, J. A., Kollmeier, J. A., Li, H., Loebman, S., Meynet, G., Bizyaev, D., Brownstein, J. R., Gupta, P., Morrison, S., Pan, K., Ramirez, S. V., Rix, H.-W., and Sánchez-Gallego, J., 2024, The Astrophysical Journal, 961, L41 (https://ui.adsabs.harvard.edu/abs/2024ApJ…961L..41J)

“Systematic study of the radiative proton capture including the compound, pre-equilibrium, and direct mechanisms”, Wang, B., Xu, Y., and Goriely, S., 2024, Physical Review C, 109, 014611 (https://ui.adsabs.harvard.edu/abs/2024PhRvC.109a4611W)

“The s process in massive stars, a benchmark for neutron capture reaction rates”, Pignatari, M., Gallino, R., and Reifarth, R., 2023, European Physical Journal A, 59, 302 (https://ui.adsabs.harvard.edu/abs/2023EPJA…59..302P)

“First measurement of the low-energy direct capture in Ne-20(p,g)Na-21 and improved energy and strength of the E_{c.m.}=368 keV resonance”, Masha, E., Barbieri, L., Skowronski, J., Aliotta, M., Ananna, C., Barile, F., Bemmerer, D., Best, A., Boeltzig, A., Broggini, C., Bruno, C. G., Caciolli, A., Campostrini, M., Casaburo, F., Cavanna, F., Ciani, G. F., Ciapponi, A., Colombetti, P., Compagnucci, A., Corvisiero, P., Csedreki, L., Davinson, T., Depalo, R., Di Leva, A., Elekes, Z., Ferraro, F., Fiore, E. M., Formicola, A., Fülöp, Z., Gervino, G., Guglielmetti, A., Gustavino, C., Gyürky, G., Imbriani, G., José, J., Junker, M., Lugaro, M., Manoj, P., Marigo, P., Menegazzo, R., Paticchio, V., Piatti, D., Prati, P., Rapagnani, D., Rigato, V., Robb, D., Schiavulli, L., Sidhu, R. S., Straniero, O., Szücs, T., Zavatarelli, S., and LUNA collaboration, 2023, Physical Review C, 108, L052801 (https://ui.adsabs.harvard.edu/abs/2023PhRvC.108e2801M)

“Stellar wind yields of very massive stars”, Higgins, E. R., Vink, J. S., Hirschi, R., Laird, A. M., and Sabhahit, G. N., 2023, Monthly Notices of the Royal Astronomical Society, 526, 534 (https://ui.adsabs.harvard.edu/abs/2023MNRAS.526..534H)

“Very massive star models. I. Impact of rotation and metallicity and comparisons with observations”, Martinet, S., Meynet, G., Ekström, S., Georgy, C., and Hirschi, R., 2023, Astronomy and Astrophysics, 679, A137 (https://ui.adsabs.harvard.edu/abs/2023A\&A…679A.137M)

“The chemical evolution of the solar neighbourhood for planet-hosting stars”, Pignatari, M., Trueman, T. C. L., Womack, K. A., Gibson, B. K., Côté, B., Turrini, D., Sneden, C., Mojzsis, S. J., Stancliffe, R. J., Fong, P., Lawson, T. V., Keegans, J. D., Pilkington, K., Passy, J.-C., Beers, T. C., and Lugaro, M., 2023, Monthly Notices of the Royal Astronomical Society, 524, 6295 (https://ui.adsabs.harvard.edu/abs/2023MNRAS.524.6295P)

“The Nuclear Reaction Network WinNet”, Reichert, M., Winteler, C., Korobkin, O., Arcones, A., Bliss, J., Eichler, M., Frischknecht, U., Fröhlich, C., Hirschi, R., Jacobi, M., Kuske, J., Martínez-Pinedo, G., Martin, D., Mocelj, D., Rauscher, T., and Thielemann, F.-K., 2023, The Astrophysical Journal Supplement Series, 268, 66 (https://ui.adsabs.harvard.edu/abs/2023ApJS..268…66R)

“Mass-loss and composition of wind ejecta in type I X-ray bursts”, Herrera, Y., Sala, G., and José, J., 2023, Astronomy and Astrophysics, 678, A156 (https://ui.adsabs.harvard.edu/abs/2023A\&A…678A.156H)

“Search for 22-Na in novae supported by a novel method for measuring femtosecond nuclear lifetimes”, Fougères, C., de Oliveira Santos, F., José, J., Michelagnoli, C., Clément, E., Kim, Y. H., Lemasson, A., Guimaraes, V., Barrientos, D., Bemmerer, D., Benzoni, G., Boston, A. J., Böttger, R., Boulay, F., Bracco, A., Čeliković, I., Cederwall, B., Ciemala, M., Delafosse, C., Domingo-Pardo, C., Dudouet, J., Eberth, J., Fülöp, Z., González, V., Gottardo, A., Goupil, J., Hess, H., Jungclaus, A., Kacskacs, A., Korichi, A., Lenzi, S. M., Leoni, S., Li, H., Ljungvall, J., Lopez-Martens, A., Menegazzo, R., Mengoni, D., Million, B., Mrázek, J., Napoli, D. R., Navin, A., Nyberg, J., Podolyák, Z., Pullia, A., Quintana, B., Ralet, D., Redon, N., Reiter, P., Rezynkina, K., Saillant, F., Salsac, M.-D., Sánchez-Benítez, A. M., Sanchis, E., Şenyiğit, M., Siciliano, M., Smirnova, N. A., Sohler, D., Stanoiu, M., Theisen, C., Valiente-Dobón, J. J., Ujić, P., and Zielińska, M., 2023, Nature Communications, 14, 4536 (https://ui.adsabs.harvard.edu/abs/2023NatCo..14.4536F)

“Type Ia Supernova Nucleosynthesis: Metallicity-dependent Yields”, Keegans, J. D., Pignatari, M., Stancliffe, R. J., Travaglio, C., Jones, S., Gibson, B. K., Townsley, D. M., Miles, B. J., Shen, K. J., and Few, G., 2023, The Astrophysical Journal Supplement Series, 268, 8 (https://ui.adsabs.harvard.edu/abs/2023ApJS..268….8K)

“Improved thermonuclear rate of Ti-42(p,g)V-43 and its astrophysical implication in the rp process”, Hou, S. Q., Iliadis, C., Pignatari, M., Liu, J. B., Trueman, T. C. L., Li, J. G., and Xu, X. X., 2023, Astronomy and Astrophysics, 677, A139 (https://ui.adsabs.harvard.edu/abs/2023A\&A…677A.139H)

“The gamma-process nucleosynthesis in core-collapse supernovae. I. A novel analysis of gamma-process yields in massive stars”, Roberti, L., Pignatari, M., Psaltis, A., Sieverding, A., Mohr, P., Fülöp, Z., and Lugaro, M., 2023, Astronomy and Astrophysics, 677, A22 (https://ui.adsabs.harvard.edu/abs/2023A\&A…677A..22R)

“3D stellar evolution: hydrodynamic simulations of a complete burning phase in a massive star”, Rizzuti, F., Hirschi, R., Arnett, W. D., Georgy, C., Meakin, C., Murphy, A. S., Rauscher, T., and Varma, V., 2023, Monthly Notices of the Royal Astronomical Society, 523, 2317 (https://ui.adsabs.harvard.edu/abs/2023MNRAS.523.2317R)

“Aluminium-26 from Massive Binary Stars. III. Binary Stars up to Core Collapse and Their Impact on the Early Solar System”, Brinkman, H. E., Doherty, C., Pignatari, M., Pols, O., and Lugaro, M., 2023, The Astrophysical Journal, 951, 110 (https://ui.adsabs.harvard.edu/abs/2023ApJ…951..110B)

“New P-26(p,g)S-27 Thermonuclear Reaction Rate and Its Astrophysical Implications in the rp-process”, Hou, S. Q., Liu, J. B., Trueman, T. C. L., Li, J. G., Pignatari, M., Bertulani, C. A., and Xu, X. X., 2023, The Astrophysical Journal, 950, 133 (https://ui.adsabs.harvard.edu/abs/2023ApJ…950..133H)

“Unveiling the chemical fingerprint of phosphorus-rich stars. I. In the infrared region of APOGEE-2”, Brauner, M., Masseron, T., García-Hernández, D. A., Pignatari, M., Womack, K. A., Lugaro, M., and Hayes, C. R., 2023, Astronomy and Astrophysics, 673, A123 (https://ui.adsabs.harvard.edu/abs/2023A\&A…673A.123B)